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We propose a method of modulation format identification based on compressed sensing using a high-order cyclic
cumulant combined with a binary tree classifier. Through computing the fourth-order cyclic cumulant of the
pretreated band signal, which is obtained by compressed sensing with the sampling rate much less than
the Nyquist sampling value, the feature vector for classification is extracted. Simulations are carried out
in the optical coherent fiber communication system with different modulation formats of multiple phase-shift
keying and multiple quadrature amplitude modulation. The results indicate that this method can identify these
modulation formats correctly and efficiently. Meanwhile, the proposed method is insensitive to laser phase noise
and signal noise.
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Current optical network architecture faces severe chal-
lenges resulting from the ever-increasing demand on
bandwidth and network capacity. In order to increase
the spectral efficiency of the optical channel, several
advanced high-order modulation formats (multiple phase-
shift keying (M-PSK) and multiple quadrature amplitude
modulation (M-QAM)) are introduced into an optical net-
work. In addition, optical networks are becoming more
flexible and software defined[1,2]. Multiple modulation for-
mats (MFI) are used in the fully programmable band-
width variable transponders to achieve the required
data rate over the transmission distance[3]. Hence, modu-
lation format identification is important for the manage-
ment of networking at the nodes to allocate network
resources effectively[4]. Meanwhile, it is also important
to identify the modulation format before applying the
proper digital signal processing (DSP) algorithm to
achieve the optimum performance for the received optical
signal[5]. So MFI is one of the critical technologies in the
software-defined network (SDN).
Exploration of MFI techniques in optical communica-

tion has just begun. Four different methods have been em-
ployed for optical MFI: a) identification from constellation
diagrams using k-means, which requires carrier and phase
recovery before MFI[6]; b) principal-component-analysis-
based pattern recognition on asynchronous delay-tap
plots, which can realize channel estimation in the mean-
time but needs large amounts of sampling points[7];
c) artificial-neural-networks-based identification, which
needs prior training[8]; d) Stokes space and machine learn-
ing technique[9,10].

In this Letter, we propose a method of MFI based on
compressed sensing (CS) combined with a high-order
cyclic cumulant and a binary tree classifier, which is
robust against all the previous drawbacks. CS is a signal
processing technique for efficiently acquiring and recon-
structing a signal. The sparsity of a signal can be exploited
to recover it from far fewer samples than required by the
Shannon–Nyquist sampling theorem. The different modu-
lation format signals have different high-order comulants
so that we can use the high-order cumulant to identify the
modulation formats. This method does not need to perfect
reconstruction for the compressed cycle spectrum, how-
ever it makes full use of the block sparse feature of a signal
in the cyclic frequency section so that the required number
of compressed measurements is greatly reduced. Numeri-
cal simulations are carried out to investigate the effective-
ness of the proposed technique under different optical
signal-to-noise ratios (OSNRs). OSNRs in the range of
10–30 dB and under a laser linewidth of 100 MHz (laser
linewidth corresponds to the laser phase noise). Results
indicate that identification of modulation formats is suc-
cessfully realized with estimation accuracies in excess of
99%. They also have shown that the proposed technique
is robust against intensity and phase noises in the system.

The systemarchitecture used in our simulations is shown
in Fig. 1. Simulations using VPI photonic simulation soft-
ware (from VPI photoncis Cor.) andMATLAB are carried
out to verify the above method. It consists of a transmitter
that is able to generate five different modulation formats
(28 GBaud BPSK, QPSK, 8PSK, 16QAM, and 32QAM),
an additive white Gaussian noise channel to introduce the
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variable power of noise, and a universal CS receiver capable
of receiving any transmitted signals of the modulation
formats.
The theory of CS as introduced by Candes, Romberg,

and Tao and Domoho demonstrates that it has begun
to be universally applied in signal reconstruction, medical
imaging, radar, remote sensing, and other fields[11–16].
Suppose transmission signal x ∈ RN is an arbitrary

K-sparse signal, K ≪ N . The sparse reconstruction prob-
lem of CS is to estimate the sparse signal from the
observed vector of measurements y ∈ RM . The classical
mathematical expression of the CS measurement
equation is

y ¼ Φx þ z; (1)

where Φ ∈ RM×N is a known measurement matrix with
M ≪ N giving us information about x, and z denotes
the measurement noise and model error. It is noted that
the measurement matrix Φ needs to satisfy the restricted
isometry property (RIP)

ð1− δK Þ‖x‖2 ≤ ‖Φx‖ ≤ ð1þ δK Þ‖x‖2; (2)

where δK is a restricted isometric constant. We will loosely
say that a matrix Φ obeys the RIP of order K if δK is not
too close to one. When this property holds, Φ approxi-
mately preserves the Euclidean length of K-sparse signals,
which in turn implies that K-sparse vectors cannot be in
the null space ofΦ. An equivalent description of the RIP is
to say that all subsets of K columns taken from Φ are in
fact nearly orthogonal. This is useful as otherwise there
would be no hope of reconstructing signal x. The next rec-
ognition is based on a higher-order cumulant that meets
the sparse feature. We can take it as the target signal of
the compression sampling signal.
Next, we analyze the kth-order cumulant of different

single modulation formats, and analyze the possibility
which is recognition parameters. The kth-order cumulant
of a complex-valued stationary random process is

Ck;xðτ1;τ2;…;τk−1Þ¼cumðxðtÞ;xðtþτ1Þ;…xðtþτk−1ÞÞ; (3)

where xðt þ τÞ denotes different delays of the same modu-
lation signal, i.e.,

xðtÞ; xðt þ τ1Þ; xðt þ τ2Þ;…; xðt þ τk−1Þ: (4)

The fourth-order cumulant can be written as

cumðx; y; z;wÞ ¼ EðxyzwÞ− EðxyÞEðzwÞ
− EðxzÞEðywÞ− EðxwÞEðyzÞ: (5)

The second- and fourth-order cyclic cumulants of the
zero-mean XðtÞ, are shown as

C2;0ðτÞ ¼ EfxðtÞxðt þ τÞg; (6)

C4;0ðτÞ ¼ EfxðtÞxðt þ τ1Þxðt þ τ2Þxðt þ τ3Þg
− C2;xðτ1ÞC2;xðτ2 − τ3Þ− C2;xðτ2ÞC2;xðτ3 − τ1Þ
− C2;xðτ3ÞC2;xðτ1 − τ2Þ: (7)

In practice, the mean value of the sample signal is re-
moved before the cumulant estimation. Sample estimating
of the correlations are given by

C2;0 ¼ E½x2ðtÞ� ¼ 1
N

XN

n¼1

ðxðtÞÞ2; (8)

C2;1 ¼ EðxðtÞx�ðt þ τÞÞ ¼ 1
N

XN

n¼1

jxðtÞj2; (9)

where the second- and fourth-order cumulants can be
written as

C 2;0 ¼ cumðxðtÞxðtÞÞ;
C 2;1 ¼ cumðxðtÞx�ðtÞÞ;
C 4;0 ¼ cumðxðtÞxðtÞxðtÞxðtÞÞ: (10)

Combining with Eqs. (3), (4), and (8), this leads to the
following estimates:

C4;0 ¼
1
N

XN

n¼1

jxðtÞj4 − 3C2
2;0: (11)

We can calculate the cumulants of the digital modula-
tion signal, which are listed below in Table 1.

This recovery of the high-order cumulant method is
based on the fact that most of the modulation signals have
smooth circulation features and Gaussian white noise only
emergent in the zero cyclic frequency. This introduces
cyclic spectrum analysis into the compressive sensing
framework and proposes the sparse signal detection

Fig. 1. System architecture of the simulated optical communica-
tions system.

Table 1. kth-order Cumulant of Digital Modulation
Signal

BPSK QPSK 8PSK 16QAM 32QAM

C2;0 1 0 0.67 0 0

C2;1 1 1 1 1 1

C4;0 −2 1 0 −0.68 −0.19
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methods in the basic compressed domain cyclic spectrum
energy characteristics.
Because the high-order cumulant meets the sparse fea-

ture, we can make use of CS for its estimation,

⟦y⟧2 ¼ Φ⟦x⟧2; (12)

where ⟦x⟧2 ¼ jxð1Þ2; xð2Þ2; xð3Þ2;…; xðnÞ2j and Φ is a
known measurement matrix.
Given the received signal from Eq. (1), we get a frame of

CS samples to simplify the reconstruction.
First, we derive a relationship between R⟦y⟧2 and R⟦x⟧2 .

Rξ is a ξ vector sequence with an autocorrelation matrix
sequence:

R⟦yt⟧2 ¼ ⟦yt⟧2ð⟦yt⟧2ÞT ¼ ðΦ⟦xt⟧2ÞðΦ⟦xt⟧2ÞT
¼ ΦR⟦xt⟧2Φ

T : (13)

Second, we find a relationship between ⟦y⟧2 and R⟦y⟧2 .

vecðR⟦yt⟧2Þ ¼ ðΦ ⊗ ΦÞvecðR⟦xt⟧2Þ; (14)

where the vecð·Þ operator creates a column vector from a
matrix · ¼ ½a1; a2;…an� by stacking its columns verti-
cally: vecð·Þ ¼ ½a1; a2;…an�T .
(Important properties of the vecð·Þ operation are given

below: vecðAXBÞ ¼ ðBT ⊗ AÞvexðXÞ).
Using a result of Ref. [17], we can relate to ⟦y⟧2 using

mapping matrices.

P⟦y⟧2 ∈ f0; 1gN 2×NðNþ1Þ
2 that map the entries in ⟦y⟧2 with

corresponding ones in vecðR⟦yt⟧2Þ:

⟦yt⟧2 ¼ P⟦yt⟧2 vecðR⟦yt⟧2Þ: (15)

Combining with Eqs. (11), (12), and (13),

⟦yt⟧2 ¼ P⟦yt⟧2 vecðR⟦yt⟧2Þ ¼ P⟦yt⟧2ðΦ ⊗ ΦÞvecðR⟦xt⟧2Þ:
(16)

Then, the fourth-order cyclic cumulant ðC 4;0Þ can be
estimated as

Cα
ð4;0Þ ¼ F⟦xt⟧4 − 3⟦F⟦xt⟧2⟧2; (17)

where F ¼ ½ 1N e−j2παn∕N �ðα;nÞ is the n-point discrete Fourier
transform (DFT) matrix.
In addition, ⟦xt⟧4 can be expressed as

⟦xt⟧4 ¼ diagðR⟦xt⟧2Þ ¼ PxvecðR⟦xt⟧2Þ
¼ Pxvecð⟦xt⟧2ð⟦xt⟧2ÞT Þ: (18)

Combining with Eqs. (17) and (18),

C4;0 ¼ FPxvecðR⟦xt⟧2Þ− 3PFxvecðRF⟦xt⟧2Þ
¼ FPxvecðR⟦xt⟧2Þ− 3PFxvecðFR⟦xt⟧2F

T Þ
¼ ½FPx − 2PFxðF ⊗ FÞ�vecðR⟦xt⟧2Þ: (19)

Combining with Eqs. (16) and (19),

⟦yt⟧2 ¼ P⟦yt⟧2ðΦ ⊗ ΦÞvecðR⟦xt⟧2Þ
¼ P⟦yt⟧2ðΦ ⊗ ΦÞ½FPx − 2PFxðF ⊗ FÞ�†C4;0: (20)

Equation (20) can be simplified as

Γ ¼ ΘCα
ð4;0Þ; (21)

where Θ and Γ can be written as

Θ ¼ P⟦yt⟧2ðΦ ⊗ ΦÞ½FPx − 2PFxðF ⊗ FÞ�†;
Γ ¼ ⟦yt⟧2:

The matrix Θ satisfies RIP rules. We can use the CS
theory for C4;0 estimation.

Finally, the system can use the CS sampling theory for
MFI combined with the four-order cumulant and the
binary tree classifier regardless of the actual noise vari-
ance. The decision rule used was

C 4;0 < 0.15 ⇒ 8PSK;

0.15 ≤ C 4;0 < 0.34 ⇒ 32QAM;

0.34 ≤ C4;0 < 0.8 ⇒ 16QAM;

0.8 ≤ C4;0 < 1.4 ⇒ QPSK;

1.4 ≤ C4;0 ⇒ BPSK; (22)

with C4;0 estimated as described in Equation (11).
Figure 2 shows the simulation setup. The dotted frame

at the lower side of Fig. 2 shows the identification flow. It
consists of a transmitter that is able to generate five differ-
ent modulation formats (28 GBaud BPSK, QPSK, 8PSK,
16QAM, and 32QAM), laser linewidth and an additive
white Gaussian noise channel introducing variable noise
power, and a universal CS receiver capable of receiving
any of the modulation formats transmitted. Through
the simulation experiments, the theoretical analysis
results are verified.

The recognition performance of the proposed methods
are shown below in Figs. 3–5.

Figure 3 shows the fourth-order cyclic cumulant estima-
tion versus OSNR under 50% Nyquist sampling factors.

Fig. 2. Simulation setup and decision flowchart.
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Figure 4 shows the modulation format recognition success
rate versus OSNR under 50% Nyquist sampling factors.
The results of the simulations demonstrate successful
identification of modulation formats with estimation accu-
racies in excess of 99% under different OSNRs in the range
of 10–30 dB. Figure 5 shows the success rate of identifica-
tion versus OSNR under different compression ratio fac-
tors. We can see that the success rate of identification
of the different modulation format signal e is more than
99% under different OSNRs in the range of 10–30 dB
and under 0.06% of the Nyquist sampling rate.

We propose a method of MFI based on CS combined
with a high-order cyclic cumulant and a binary tree
classifier. In this work, our main contribution is to recon-
struct the cyclic spectrum of a sparse signal directly from
subNyquist-rate compressive samples without having to
recover the signal itself. The simulation results indicate
that this method can effectively realize signal detection
for modulation format identification in low OSNR condi-
tions. In addition, on the basis of the CS model, it gives an
extraction method for the cyclic spectrum feature that is
based on binary iteration and also combines it with a
binary tree classifier for five kinds of common signal modu-
lation recognition. This technique utilizes CS with a
sampling rate much less than the Nyquist sampling rate
and a binary tree classifier to enable low-cost identifica-
tion at the receivers as well as at the intermediate network
nodes without requiring any prior information from the
transmitters.
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